Archive for the 'ntp' Category

Useful NTP server related resources – The home for the NTP Project who provides support and additional development resources for the Official Reference Implementation of NTP.

NTP Project support pages

THE NTP pool – list of public servers

NPL – The National Physical Laboratory in the UK who control the MSF radio signal.

The University of Delaware and David Mills’ information page, Professor Mills is the original inventor and developer of NTP

David Mills’ list of Public NTP Time Servers a list of public NTP servers

National Institute of Standards and Technology (NIST) who operate the USA’s WWVB radio signal

Europe’s largest supplier of NTP server related products.

Galleon UK – NTP server products for the UK – one of the largest time and frequency suppliers in the United States

NTP – Wikipedia article on NTP

NTP server checker – free tool to ensure time server accuracy

Free NTP server checker – available for download

Galleon’s free NTP Server Checker allows you to check the following items
* IP address – the time server you are checking.
* NTP Version
* Reference timestamp (the prime epoch ) used by NTP to work out the time from this set point
* Round trip delay (the time it takes request to arrive and come back in milliseconds)
* Local clock offset – time difference between host and client
* Leap indicator (if there is to be a leap second that day – normally only on 31 December)
* Mode 3 – indicates a client request
* Stratum level – which stratum level the NTP server is (a stratum 1 server receives the time from an atomic clock source a stratum 2 server receives the time from a stratum 1 server)
* Poll Interval (Will be 1 as only 1 requests is made by the SNTP client)
* Precision – how accurate in milliseconds
* Root Delay – This is a signed fixed-point number indicating the total roundtrip delay to the primary reference source at the root
* Root dispersion (in milliseconds)- The root dispersion is the maximum (worst case) difference between the local system clock and the root of the NTP tree (stratum 1 clock)
* Ref ID – the host name
* Originate time stamp (time before synchronisation request)
* Receive timestamp – the time the host got request
* Transmit timestamp – the time the host sends back to us
* Is response valid – synchronised or not

Please download from Galleon Systems

NTP Server – common acronyms explained:

NTP – Network Time Protocol

SNTP – Simple Network Time Protocol

GPS – Global Positioning System

UTC – Coordinated Universal Time

MSF – Radio Time Signal for United Kingdom

WWVB – Radio Time Signal for American

DCF – Radio Time Signal for Germany

LAN – Local Area Network

UDP – User Datagram Protocol

TCP – Transmission Control Protocol

IP – Internet Protocol

TDF – Radio Time Signal for France

CHU – Radio Time Signal for Canada

JJY – Radio Time Signal for Japan

HBG – Radio Time Signal for Switzerland

USB – Universal Serial Bus

RTC – Real Time Clock

AM – Amplitude Modulation

APM – Automatic Power Management

DES – Data Encryption Standard

ESD – Electrostatic Discharge

FM – Frequency Modulation

IETF – Internet Engineering Task Force

IRIG – Inter-Range Instrumentation Group

MD5 – Message Digest

PPM – Part Per Million

PPS – Pulse Per Second

RFC – Request For Comments

SA – Selective Availability

TAI – International Atomic Time

SI – International System of Units

Finding a Public NTP Server

A public NTP Server is a time server on the Internet that, as the name suggests, members of the public can use as a timing source. The best location on the Internet to find a list of public NTP servers is the home of NTP –

There are two lists of public NTP servers on, one for primary servers and one for secondary servers. Primary servers have up to several hundred clients each. However, many primary servers are ‘closed access’ meaning that only agreed clients can access them. This is because if there is too much traffic attempting to receive a timing source from a primary source then it will clog the network making the server useless.

Primary servers are known as a stratum 1 server in that they get their timing source direct from an atomic clock often using the GPS or national time and frequency transmissions. Secondary NTP servers tend to be stratum 2 time servers, that is a time server that receives its timing source from a stratum 1 server.

Most users that require a public NTP server will find that most primary servers are closed access and that they will have to use a secondary NTP server. When using a public NTP server it is important that access policies are adhered to as many institutions require on these servers for timing information.

NTP Server –Telling the NTP Time

Network Time Protocol (NTP) is an Internet based protocol designed to distribute and synchronise time across a network.

NTP is in fact one of the oldest Internet protocols having been developed in the late 1980’s at Delaware University when the Internet was still in its infancy. It was devised by Professor David Mills and his team when they realised the need for accurate time synchronisation if computers were needed to communicate with each other.

A NTP server is a dedicated device that receives a single timing source and then distributes it amongst all network devices. A NTP server will receive the timing information through a number of ways but normally it is a UTC source (coordinated universal time) a global timescale based on the time as told by atomic clocks.

NTP handles the time in a different way to how humans perceive and deal with it. While we may split a time into seconds, minutes, hours, days, months and years; NTP regards time  as a single number which is the number of seconds since the ‘prime epoch’.

The prime epoch is a date set for when NTP began counting seconds. For NTP the prime Epoch is 00.01 on 1 January 1900 so that means on 1 January 2008 the time according to NTP will be 3405888000, which is the number of seconds since 1900.

NTP Server Solutions

The NTP server is now an essential part of the modern computer network. Without a dedicated NTP server administrators are forced to rely on unsecure and inaccurate Internet sources to synchronise their network clocks too.

The potential risks involved in this, namely leaving a hole open in the network firewall and the lack of the NTP security measure: authentication, means that networks that use an Internet based timing source are risking their system to attacks from malicious user and hackers.

It should also be noted that a survey of Internet based timing sources found less than a third were accurate to UTC time and those that were could still be too far away from client to make any useful synchronisation.

There are two types of dedicated NTP server, the GPS NTP server and the radio referenced NTP server. The difference between the two is based solely on the method they receive their UTC time source from. A GPS NTP server will use the signals broadcast from the GPS satellites above the Earth’s atmosphere. These signals are very reliable and can be picked up anywhere in the Worlds as long as the GPS antenna has a clear view of the sky.

The alternative is to use a dedicated NTP server that can receive a signal from the national time and frequency transmissions broadcast by several national physics laboratories. While not available in every country and quite vulnerable to interference these long-wave time signals are still an accurate and secure method of receiving UTC time. They are also ideally suited for network administrators who, for reasons of logistics can’t place a GPS antenna on the roof.

NTP server – Introduction to Network Time Protocol.

Network Time Protocol (NTP) is one of the Internet’s oldest protocols still in use. Developed by Dr David Mills from the University of Delaware, it has been in constant use and continually updated since 1985. NTP is a protocol designed to synchronize the clocks on computers and networks across the Internet or Local or Wider Area Networks (LANs/WANS).

In a modern global economy time synchronisation is essential for carrying out time sensitive transactions such as booking an airline ticket to bidding on an Internet auction site. If clocks were not synchronised to the same time you may find your airline seat sold after you had bought it and Ebay’s administrators would not be able to discover whose bid was the latest.

NTP is a multi-tiered system, each tier being called a stratum. Servers at each tier communicate with each other (peer) and provide time to lower strata. Servers at the top stratum, stratum 1 connect to an atomic clock either over the Internet or by a radio or GPS receiver while a stratum 2 server will connect to a stratum 1.

NTP uses an algorithm (Marzullo’s algorithm) to synchronise time on a network using time scales like UTC (Coordinated Universal Time or Temps Universel Coordonné) and can support such features as leap seconds – added to compensate for the slowing of the Earth’s rotation.

NTP (version 4 being the latest) can maintain time over the public Internet to within 10 milliseconds (1/100th of a second) and can perform even better over LANs with accuracies of 200 microseconds (1/5000th of a second) under ideal conditions.

NTP time servers work within the TCP/IP suite and rely on UDP (User Datagram Protocol). A less complex form of NTP called Simple Network Time Protocol (SNTP) that does not require the storing of information about previous communications, needed by NTP, is used in some devices and applications where high accuracy timing is not as important and is also included as standard in Windows software (although more recent versions of Microsoft Windows have the full NTP installed and the source code is free and readily available on the Internet).

The NTP program (known as a daemon on UNIX and a service on Windows) runs in the background and refuses to believe the time it is told until several exchanges have taken place, each passing a set of tests. If the replies from a server satisfy these ‘protocol specifications’, the server is accepted. It usually takes about five good samples (five minutes) until a NTP server is accepted as a source for synchronisation.

Synchronisation with NTP is relatively simple, it synchronises time with reference to a reliable clock source such as an atomic clock, although these are extremely expensive and are generally only to be found in large-scale physics laboratories, however NTP can use either the Global Positioning system (GPS) network or specialist radio transmission to receive UTC time from these clocks.

A simplified version of NTP called Simple Network Time Protocol (SNTP) exists that does not require the storing of information about previous communications as required by NTP. It is used in some devices and applications where high accuracy timing is not as important and is installed on older versions of Microsoft Windows. Windows since 2000 has included the Windows Time Service (w32time.exe) which uses SNTP to synchronise the computer clock. NTP is also available on UNIX and LINUX (download via