Archive for November, 2008

Free NTP server checker – available for download

Galleon’s free NTP Server Checker allows you to check the following items
* IP address – the time server you are checking.
* NTP Version
* Reference timestamp (the prime epoch ) used by NTP to work out the time from this set point
* Round trip delay (the time it takes request to arrive and come back in milliseconds)
* Local clock offset – time difference between host and client
* Leap indicator (if there is to be a leap second that day – normally only on 31 December)
* Mode 3 – indicates a client request
* Stratum level – which stratum level the NTP server is (a stratum 1 server receives the time from an atomic clock source a stratum 2 server receives the time from a stratum 1 server)
* Poll Interval (Will be 1 as only 1 requests is made by the SNTP client)
* Precision – how accurate in milliseconds
* Root Delay – This is a signed fixed-point number indicating the total roundtrip delay to the primary reference source at the root
* Root dispersion (in milliseconds)- The root dispersion is the maximum (worst case) difference between the local system clock and the root of the NTP tree (stratum 1 clock)
* Ref ID – the host name
* Originate time stamp (time before synchronisation request)
* Receive timestamp – the time the host got request
* Transmit timestamp – the time the host sends back to us
* Is response valid – synchronised or not

Please download from Galleon Systems

NTP Server – common acronyms explained:

NTP – Network Time Protocol

SNTP – Simple Network Time Protocol

GPS – Global Positioning System

UTC – Coordinated Universal Time

MSF – Radio Time Signal for United Kingdom

WWVB – Radio Time Signal for American

DCF – Radio Time Signal for Germany

LAN – Local Area Network

UDP – User Datagram Protocol

TCP – Transmission Control Protocol

IP – Internet Protocol

TDF – Radio Time Signal for France

CHU – Radio Time Signal for Canada

JJY – Radio Time Signal for Japan

HBG – Radio Time Signal for Switzerland

USB – Universal Serial Bus

RTC – Real Time Clock

AM – Amplitude Modulation

APM – Automatic Power Management

DES – Data Encryption Standard

ESD – Electrostatic Discharge

FM – Frequency Modulation

IETF – Internet Engineering Task Force

IRIG – Inter-Range Instrumentation Group

MD5 – Message Digest

PPM – Part Per Million

PPS – Pulse Per Second

RFC – Request For Comments

SA – Selective Availability

TAI – International Atomic Time

SI – International System of Units

Finding a Public NTP Server

A public NTP Server is a time server on the Internet that, as the name suggests, members of the public can use as a timing source. The best location on the Internet to find a list of public NTP servers is the home of NTP – www.ntp.org

There are two lists of public NTP servers on ntp.org, one for primary servers and one for secondary servers. Primary servers have up to several hundred clients each. However, many primary servers are ‘closed access’ meaning that only agreed clients can access them. This is because if there is too much traffic attempting to receive a timing source from a primary source then it will clog the network making the server useless.

Primary servers are known as a stratum 1 server in that they get their timing source direct from an atomic clock often using the GPS or national time and frequency transmissions. Secondary NTP servers tend to be stratum 2 time servers, that is a time server that receives its timing source from a stratum 1 server.

Most users that require a public NTP server will find that most primary servers are closed access and that they will have to use a secondary NTP server. When using a public NTP server it is important that access policies are adhered to as many institutions require on these servers for timing information.

NTP Server – Using Stratum

NTP (Network Time Protocol) is the most prevalent time synchronisation software available. On of the reasons NTP is so successful is the way it organises its clients into a hierarchy.

The hierarchy of NTP is divided into stratum with each strata representing the distance from the original reference clock.  For instance an atomic clock that generates a UTC (coordinated universal time) signal is referred to as a stratum 0 device.

A NTP server that receives a stratum  1 time signal is referred to as a stratum 1 device and a device that receives a time source from a NTP server is a stratum 2 device. NTP can support up to 16 strata although the further away from the reference clock you get (stratum 0) the less accurate the device will be.

However, by arranging the network into stratum and allowing stratum 2 devices to pass on the time to a stratum 3 device (and so on) it reduced the demand on the NTP server and the network. By using a stratum based network, realistically thousands of machines can be synchronised to just one NTP server.